Department of Physics

Jagannath Barooah University Jorhat-1 (Assam)

Teaching Plan for the Session: 2025-26

Pranjal Bora, Assistant Professor, Physics

Odd Semester: 2025-26

Class/Sem ester	Title & Code of The Paper Allotted (credit)	Method of Teaching	Teaching Material	Unit	Topic	Period/H ours Required	Details of the Contents	Remarks/Books
B.Sc. 1st Semester	Mechanics (PHYMJ-1) (4 Credits)	Lecture, PPT Presentation, Discussion	, Whiteboard LCD Projector	Unit 8	Oscillati ons	8 hours	Unit 8: SHM: simple harmonic oscillations, damped oscillations, forced oscillations, transient and steady states, resonance, and sharpness of resonance. power dissipation and quality factor. differential equation of simple harmonic oscillations, general solutions, kinetic and potential energies, and total energy with graphical representations.	1. An Introduction to Mechanics, D. Kleppner, R.J. Kolenkow, 1973 McGraw-Hill. 2. Mechanics, D.S. Mathur, S. Chand and Company Limited, 2000.
B.Sc 3rd semester	Mathematica 1 Physics-I (4 Credits) PHYMJ 3	Lecture, PPT Presentation, Discussion	Whiteboard LCD Projector	Units 1, 3 & 4	vector calculus , Dirac delta	25+2+10 = 37	Unit 1: Properties of vectors under rotations. scalar product and its variance under rotations, vector	Mathematical physics GUPTA & KUMAR Mathematical Physics B.S. Rajput

		function and Fourier	product, scalar triple product, and their interpretation in terms of	Mathematical Physics H K Das
		series	area and volume. scalar and	
			vector fields.	
			Vector differentiation:	
			directional derivatives and	
			normal derivatives. gradient	
			of a scalar field and its	
			geometrical interpretation,	
			divergence and curl of a	
			vector field. del and the	
			Laplacian operator. vector	
			identities.	
			Vector integration: line,	
			surface and volume integral	
			of vector fields. gauss	
			divergence theorem. Green	
			and Stokes' theorems and	
			their applications.	
			Unit2: Dirac delta function	
			and its properties: definition	
			with graphs, representation	
			as a limit of gaussian and	
			rectangular function.	
			properties of dirac delta	
			function.	
			Unit4: Periodic functions:	
			orthogonality of sine and	
			cosine function, expansion	
			of periodic functions in a	
			series of sine and cosine	
			functions and determination	
			of fourier	

			coefficients.Expansion of functions with arbitrary period intervals. Even and odd functions and their fourier expansions. Term by term differentiation and integration of fourier series. Persevals Identity.	

B.Sc. 5th Semester	Atomic and Molecular Physics PHYMJ 7	Lecture, PPT Presentation	Whiteboard, LCD Projector	Unit 2 Unit 3	U2. Interacti on of atoms with electric and magneti c fields U3.Line width and broaden ing of spectral lines.	12+6=18 Hours	Unit 2: Interaction of atoms with electric and magnetic fields; magnetic fields, precessional motion, spin-orbit interaction, fine structure, influence of external magnetic fields, and the Zeeman and Paschen-Back effects in one- and two-electron systems. Lande g-factor and splitting of spectral lines. Unit 3: Line width and broadening; factors influencing spectral line widths, collisional Doppler, and Heisenberg broadening. transitional probability, population of states, Beer-Lambert Law.	B. B. Laud. Lasers and nonlinear optics H E White. Introduction to Atomic Spectra, Tata McGraw Hill
-----------------------	--------------------------------------	---------------------------	------------------------------	------------------	--	------------------	--	---

M.Sc. 1st Semester	Quantum mechanics PPHYC 103	Lecture, PPT	Whiteboard, LCD projector	Unit 6 Relativi stic Quantu m Mechan ics	Relativi stic quantu m mechani cs	12 hours	Klein-Gordon equation, interpretation of KG equation, particle in a coulomb field, Dirac equation for a free particle, Dirac matrices, the covariant form of the Dirac equation, probability density, plane wave solution, negative energy states, and the spin of Dirac particles.	Quantum Mechanics by Zettli Quantum Mechanics by A K Ghatak

M.Sc. 3rd Semester	Numerical and Computatio nal Physics PPHYC 403	Lecture, PPT	Whiteboard, LCD projector	Unit 3	Interpol ation methods Numeri cal different iation and integrati on.	12 hours	Interpolation: Lagrange and Newton interpolation. Linear interpolation. Numerical differentiation and integration: Simpson's rule, trapezoidal rule, Gaussian quadrature method, Gauss-Laguerre-Gauss-Her mite method, and Runge-Kutta method of second and fourth order.	Sastry, Introductory methods of numerical analysis. Introduction to numerical analysis, Hilbert F. B.

Even Semester: 2025-26

Class/S emester	Title & Code of The Paper Allotted (credit)	Method of Teaching	Teaching Material	Unit	Торіс	Period/H ours Require d	Details of the Contents	Remarks/Books
B.Sc. 2nd Semest er	Electricity and Magnetism PHYMJ 2	Lecture, PPT Presentation,	Whiteboard, LCD Projector	Unit 3	Magneti c effect of electric current	10 hours	Unit 3: Magnetic force between current elements and definition of magnetic field B. Biot-Savart's Law and its simple applications: straight wire and circular loop. Current Loop as a Magnetic Dipole and its Dipole Moment (Analogy with Electric Dipole). Ampere's Circuital Law and its application to (1) Solenoid and (2) Toroid. Properties of B: curl and divergence. Vector Potential. Magnetic Force on (1) point charge (2) current carrying wire (3) between current	1. Elect ricity , & Elect roma gneti c Theo ry, S. Mah ajan and Cho udhu ry, 2012 , Tata McG raw 2. Electricity and Magnetism, Edward M. Purcell, 1986 McGraw-H

							elements. Torque on a current loop in a uniform Magnetic Field	ill Education 3. Introductio n to Electrodyn amics, D.J. Griffiths, 3rd Edn., 1998, Benjamin Cummings.
B.Sc. 4th Semest er	Classical mechanics I PHYMJ 5	Lecture, PPT	Whiteboard, LCD Projector,	Unit 1 Unit 2 Unit 3 Unit 4	Mechanics of system of particles Variational principle and its application s Lagrangian and Hamiltonia n formulatio ns.	34 hours (Theory)	Mechanics of a system of particles: conservation of linear, angular momentum and Energy. Constraints and constrained motion, degree of freedom and generalized coordinates, generalized notatios for displacement, velocity, acceleration and force. Limitations of Newtonian Mechanics	Advanced Classical Mechanics by Herbert Goldstein. Classical Mechanics by Rana and Jogg Advanced Classical Mechanics by GUPTA AND kUMAR.

B.Sc. 6th Semest er Physics Credit 4	Lecture	Whiteboard, LCD Projector	Unit 7 & 8	Particle accelerator s and particle physics	15 hours	Particle Accelerators: Van de Graaff generator, linear accelerator, cyclotron, synchrotron, and betatron. Particle Physics: particle interactions; basic features, types of particles, and their families. symmetries and conservation laws, energy and momentum, angular momentum, parity, baryon number, lepton number , isospin, strangeness and charm, color quantum numbers, and gluons.	2)	Introductory Nuclear Physics by Kenneth S. Krane (Wiley India Pvt. Ltd.,200 8). Concept s of Nuclear Physics by Bernard L. Cohen (Tata McGra w-Hill,1 998). Introduction to the Physics of Nuclei & Particles , R.A. Dunlop. (Thoms
--------------------------------------	---------	------------------------------	------------	---	----------	--	----	---

				onAsia, 2004). 4) Introduc tion to High Energy Physics, D.H. Perkins, Cambrid ge
--	--	--	--	--

M.Sc. 2nd SEM	Nuclear and Particle Physics PPHYC 202	LECTURE, PPT.	WHITE BOARD, PROJECTOR	Units 6 & 7 Elementary particle and nuclear astrophysics	16 hours	Fundamental forces, properties of mesons and baryons, symmetries and conservation laws, the quark model, the concept of colored charge, properties of quarks and leptons, Gauss symmetry in electrodynamics, particle interactions, and Feynman diagrams.	K. S. Krone Introductory Nuclear Physics, John Wiley. Particle Physics by Griffiths.
						astrophysics: stellar structure,	

			nuclear burning stages, hydrogen and helium burning, core collapse, Chandrasekhar limit, supernova, white dwarf, neutron stars, pulsars and black holes, and synthesis of nuclei in stars.
--	--	--	--

Besides the Theory Classes, we use to demonstrate in practical classes of both UG and PG and also supervise the projects to be performed by both UG and PG students.