Teaching Plan Academic Session: 2025-26 Department of Botany ## Jagannath Barooah College (Autonomous), Jorhat Name of the Teacher: Dr. Liza Handique Semester: ODD & EVEN (UG and PG) | Class/Semeste
r | Title & Code of
The Paper
Allotted
(Credit) | Method of
Teaching | Teaching
Material | Uni
t | Topic | Period/
Hours
Require
d | Details of the
Contents | Remarks /
Books | |-------------------------|---|--|--|-----------|----------------------------------|----------------------------------|--|--------------------| | UG, Semester I
(Odd) | Phycology and Microbiology BOTMJ-011/BOTMI011, Credits: 4 | Discussion
, Chalk and
Board,
PPT | Textbook
,
Referenc
e books,
diagrams,
You Tube
videos | Unit
6 | Chlorophyta
and
Charophyta | 10 | General Characteristics, occurrence, range of thallus organization, cell structure, reproduction, Morphology and life cycle of Chlamydomonas, Volvox, Oedogonium, Coleochate, Chara, Evolutionary significance of prochloron | B.R. Vashistha | | UG, Semester I
(Odd) | Phycology and
Microbiology
BOTMI011,
Credits: 4 | Discussion
, Chalk and
Board,
PPT | Textbook
,
Referenc
e books,
diagrams, | Unit
6 | Chlorophyta
and
Charophyta | 10 | General Characteristics, occurrence, range of thallus organization, cell structure, | B.R. Vashistha | | | | | You Tube
videos | | | | reproduction, Morphology and life cycle of Chlamydomonas, Volvox, Oedogonium, Coleochate, Chara, Evolutionary significance of prochloron | | |-------------------------|--|--|--|-----------|---------------------------|----|--|-------------------------------| | UG, Semester I
(Odd) | Basic of Botany,
BOTMD-011,
Credits:03 | Discussion
, Chalk and
Board,
PPT | Textbook
,
Referenc
e books,
diagrams,
You Tube
videos | Unit
5 | Basic Plant
physiology | 10 | Photosynthesis, respiration and transpiration. | A.C. Dutta | | UG, Semester I
(Odd) | Basic of Botany,
BOTMD-011,
Credits:03 | Discussion
, Chalk and
Board,
PPT | Textbook
,
Referenc
e books,
diagrams,
You Tube
videos | Unit
6 | Economic
botany | 10 | Common cereals,
pulses, timbers, oil
yielding crops and
medicinal plants of
Assam | A.C. Dutta | | UG, Semester I
(Odd) | Biofertilizers,
BOTSEC01,
Credits:03 | Discussion
, Chalk and
Board,
PPT | Textbook
,
Referenc
e books,
diagrams,
You Tube
videos | Unit
3 | Mycorrhiza | 8 | Mycorrhizal association, types of mycorrhizal association; colonization of AM- isolation and inoculum production of AM, and its influence on growth and yield of plants. | Bhattacharyya
et al., 2025 | | UG, Semester III
(Odd) | Mycology and
Phytopathology
, BOTMJ-
031/BOTMI031
, Credits :04 | Discussion
, Chalk and
Board,
PPT | Textbook
,
Referenc
e books,
diagrams,
You Tube
videos | Unit
7 | Applied
mycology | 10 | Role of fungi in biotechnology, application of food in food industry, pharmaceutical preparations; agriculture (biofertilizers); Mycotoxins; Biological control (Mycofungicides, Mycoherbicides, Myconematicides) | B.R. Vashistha | |---------------------------|---|--|--|-----------|---------------------------------|----|---|--| | UG, Semester III
(Odd) | Biomolecules
and cell biology,
BOTMJ-032,
Credits: 04 | Discussion
, Chalk and
Board,
PPT | Textbook
,
Referenc
e books,
diagrams,
You Tube
videos | Unit
5 | Cell division | 8 | Phases of eukaryotic cell cycle, mitosis and meiosis; regulation of cell cycle. | Lehninger
Principles of
biochemistry | | UG, Semester III
(Odd) | Morphology
and anatomy of
angiosperms,
BOTMJ-033,
Credits: 04 | Discussion
, Chalk and
Board,
PPT | Textbook
,
Referenc
e books,
diagrams,
You Tube
videos | Unit
6 | Adaptive and protective systems | 10 | Epidermal tissue system, cuticle, epicuticular waxes, trichomes (Uni and multicellular, glandular and nonglandular, two examples of each), stomata (classification); Adcrustation and incrustation; | Singh, Pande
and Jain | | | | | | | | | anatomical
adaptations of
xerophytes and
hydrophytes. | | |---------------------------|--|--|--|-----------|--------------------------|----|--|--------------------------| | UG, Semester III
(Odd) | Mycology and
Phytopathology
, BOTMI031,
Credits :04 | Discussion
, Chalk and
Board,
PPT | Textbook
,
Referenc
e books,
diagrams,
You Tube
videos | 7 | Applied
mycology | 10 | Role of fungi in biotechnology, application of food in food industry, pharmaceutical preparations; agriculture (biofertilizers); Mycotoxins; Biological control (Mycofungicides, Mycoherbicides, Myconematicides) | B.R. Vashistha | | UG, Semester V
(Odd) | Plant
systematics,
BOTMJ-051,
Credits: 04 | Discussion
, Chalk and
Board,
PPT | Textbook
,
Referenc
e books,
diagrams,
You Tube
videos | Unit
6 | Phylogeny of angiosperms | 12 | Terms and concepts (Primitive and advanced, homology and analogy, parallelism and convergence, monophyly, paraphyly, polyphyly and clades). Origin and evolution of angiosperms; coevolution of angiosperms and pollinators; methods of illustrating | Singh, Pande
and Jain | | | | | | | | | evolutionary
relationships
(Phylogenetic tree,
cladogram) | | |-------------------------|--|--|--|-----------|-----------------------------------|----|--|---------------------------| | UG, Semester V (Odd) | Reproductive
biology of
angiosperms,
BOT MJ-052,
Credits: 04 | Discussion
, Chalk and
Board,
PPT | Textbook
,
Referenc
e books,
diagrams,
You Tube
videos | Unit 6 | Self-
incompatibilit
y | 10 | Basic concepts (Interspecific, intraspecific, homomorphic, heteromorphic, GSI and SSI); Methods to overcome self incompatibility; mixed pollination, bud pollination, stub pollination; intra ovarian and invitro pollination; modifications of stigma-surface, parasexual hybridization; cybrids, in vitro fertilization. | Bhojwani and
Bhatnagar | | UG, Semester V
(Odd) | Reproductive
biology of
angiosperms,
BOT MJ-052,
Credits: 04 | Discussion
, Chalk and
Board,
PPT | Textbook
,
Referenc
e books,
diagrams,
You Tube
videos | Unit
7 | Embryo,
endosperm
and seed. | 12 | Structure and types; general pattern of development of dicot and monocot embryo and endosperm; suspensor: structure and functions; embryo-endosperm relationship; nutrition of embryo; | Bhojwani and
Bhatnagar | | | | | | | | | unusual features;
embryo development
in Paeonia. Seed
structure,
importance and
dispersal
mechanism.
Polyembryony and
apomixis. | | |---------------------------|---|--|--|-----------|--|----|--|-----------------------| | UG, Semester V
(Odd) | Plant
physiology,
BOTMJ-051,
Credits: 04 | Discussion
, Chalk and
Board,
PPT | Textbook
,
Referenc
e books,
diagrams,
You Tube
videos | Unit
7 | Phytochrome,
cryptochrome
and
Phototropin | 10 | Discovery, chemical nature, role in photomorphogenesis , low energy responses (LER) and high irradiance responses (HIR), mode of action. | Pandey and sinha | | UG, Semester V
(Odd) | Plant ecology
and Taxonomy,
BOTMI-051;
Credits: 04 | Discussion
, Chalk and
Board,
PPT | Textbook
,
Referenc
e books,
diagrams,
You Tube
videos | Unit 3 | Ecosystem | 10 | Structure; energy flow trophic organization; food chains and food webs, ecological pyramids production and productivity; biogeochemical cycling; cycling of carbon, nitrogen and phosphorus. | Shukla and
Chandel | | UG, Semester II
(Even) | Archegoniatae,
BOTMJ-021,
Credits: 04 | Discussion
, Chalk and
Board,
PPT | Textbook
,
Referenc
e books,
diagrams, | Unit
3 | Pteridophytes | 15 | Classification upto
family, morphology,
anatomy and
reproduction of
Psilotum, Selaginella, | B.R. Vashistha | | | | | You Tube
videos | | | | Equisetum and Pteris (Developmental details not to be included). Apogamy and apospory, heterospory and seed habit, telome theory, stelar evolution; ecological and economic importance. | | |---------------------------|--|--|--|-----------|---|----|--|----------------| | UG, Semester II
(Even) | Archegoniatae,
BOTMI-021,
Credits: 04 | Discussion
, Chalk and
Board,
PPT | Textbook
,
Referenc
e books,
diagrams,
You Tube
videos | Unit 3 | Pteridophytes | 15 | Classification upto family, morphology, anatomy and reproduction of Psilotum, Selaginella, Equisetum and Pteris (Developmental details not to be included). Apogamy and apospory, heterospory and seed habit, telome theory, stelar evolution; ecological and economic importance. | B.R. Vashistha | | UG, Semester IV
(Even) | Plant Breeding,
BOTMJ-044,
Credits: 04 | Discussion
, Chalk and
Board,
PPT | Textbook
,
Referenc
e books,
diagrams,
You Tube | Unit
4 | Inbreeding
depression
and heterosis | 10 | History, genetic basis
of inbreeding
depression and
heterosis;
Applications. | A.C. Gogoi | | | | | videos | | | | | | |---------------------------|--|--|--|------------|---------------------------|----|--|--| | UG, Semester IV
(Even) | Basic of
genetics,
BOTMJ-042
Credits: 04 | Discussion
, Chalk and
Board,
PPT | Textbook
,
Referenc
e books,
diagrams,
You Tube
videos | Unit
6 | Fine structure
of gene | 08 | Classical v/s molecular concepts of the gene; cis trans complementation test for functional allelism; structure of phage T4, rII locus | A.C. Gogoi,
Pranab Paul | | UG, Semester IV
(Even) | Economic
botany, BOTMJ-
041, Credits:m
04 | Discussion
, Chalk and
Board,
PPT | Textbook
,
Referenc
e books,
diagrams,
You Tube
videos | Unit
7 | Sources of oils and fats | 08 | General description, classification, extraction, their uses and health implications groundnut, coconut, soybean, mustard (Botanical name, family and uses) | Singh, Pande
and Jain | | UG, Semester IV
(Even) | Economic
botany, BOTMJ-
041, Credits: 04 | Discussion
, Chalk and
Board,
PPT | Textbook
,
Referenc
e books,
diagrams,
You Tube
videos | Unit
10 | Fibers and rubbers | 05 | Classification, based
on the origin of
fibers; cotton, coir,
jute, hevea
(morphology,
extraction and uses) | Singh, Pande
and Jain | | UG, Semester IV
(Even) | Molecular
Biology,
BOTMJ-043,
Credits: 04 | Discussion
, Chalk and
Board,
PPT | Textbook
,
Referenc
e books,
diagrams,
You Tube
videos | Unit
3 | Replication of DNA | 10 | Chemistry of DNA synthesis (Kornberg's discovery); general principles-bidirectional, semiconservative and semi discontinuous | Sharma,
Bhattacharyya
and
Bhattacharyya
, 2024 | | | | | | | | | replication, RNA | | |-----------------|---------------|-------------|-----------|------|--------------|----|-------------------------|------------| | | | | | | | | Priming; various | | | | | | | | | | models of DNA | replication, including | | | | | | | | | | rolling circle, Theta | | | | | | | | | | mode of replication, | | | | | | | | | | replication of linear | | | | | | | | | | ds-DNA, replication | | | | | | | | | | of the 5' end of linear | | | | | | | | | | chromosome; | | | | | | | | | | Enzymes involved in | | | | | | _ , , | | , , | | DNA replication. | | | PG, Semester I | Bryophytes, | Discussion | Textbook | Unit | Pteridophyta | 15 | Origin and evolution | B.R. | | | Pteridophytes | , Chalk and | , | 3 | | | of Pteridophytes; | Vashsistha | | | and | Board, | Referenc | | | | Telome concept; | | | | Gymnosperms, | PPT | e books, | | | | Stelar evolution; | | | | BOTC-102, | | diagrams, | | | | heterospory and | | | | Credits: 04 | | You Tube | | | | origin of seed habit; | | | | | | videos | | | | classification. | | | | | | | | | | Morphology, | | | | | | | | | | anatomy, | | | | | | | | | | reproduction and | | | | | | | | | | classification of | | | | | | | | | | pteridophytes; | | | | | | | | | | Economic | | | | | | | | | | importance of | | | | | | | | | | pteridophytes. | | | PG, Semester II | Plant | Discussion | Textbook | Unit | Growth and | 12 | Differentiation, | Pande and | | | Physiology, | , Chalk and | , | 3 | development | | growth phase; | Sinha, | | | biochemistry | Board, | Referenc | | | | physiology of | Lehninger | | | and molecular | PPT | e books, | | | | flowering; | | | | biology | | diagrams, | | | | photoperiodism and | | | | BOTC202, | | You Tube | | | | vernalization; | | | Credits: 04 | 4 videos | phytochrome | |-------------|----------|-----------------------| | | | concept and role in | | | | flowering; plant | | | | growth hormones; | | | | auxins, gibberellins, | | | | cytokinins, ethylene | | | | and abscisic acid and | | | | their physiological | | | | role; senescence and | | | | abscission. |